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= Model transformations are at the heart of model-based
engineering
m Atlas Transformation Language (ATL) is increasingly used in

industry
m Example: Generating code to/from models

= Want to verify correctness for ATL transformation specifications

m Verify visual contracts
m Input independence - verification for all input models
m Examine combinations of transformation rules
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Overview

= Translating ATL transformation into DSLTrans language

m Verify visual contracts on DSLTrans

ATLC DSLTrans

[_Translation (ATL HOT) > =7 (I= =

m Performed through a higher-order transformation
m Specified in ATL
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Transformation Metamodels

Haisaholds | Gounly |

have To..* has To..*

Family | Person

father mother daughter son
0..2 0..2 * *

Member | Man | Woman

m Transform Members to Men and Women

m NB: Metamodels are not representative of today's society!
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ATL Transformation

1 module Families2Persons;

2 create OUT : Persons from IN : Families;
3

4

5

6

7

8

9

10

11

12

13

14

15 rule Father2Man { —-- RZ

16 from

17 mem : Families!Member, fam : Families!Family
18 (fam.father=mem)

19 to

20 m : Persons!Man (

21 fullName <- mem.firstName + fam.lastName --B2
22 )}
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ATL Transformation

module Families2Persons;
create OUT : Persons from IN : Families;

1

2

3

4 rule Households2Community { —— RI
5 from

6 hh: Families!Households

7
8

to
c : Persons!Community (

9 has <- hh.have->collect (f | thisModule.
10 resolveTemp (Tuple{mem=£f.father, fam=£f}, 'm")), —-BII
11 has <- hh.have->collect (f | thisModule.
12 resolveTemp (Tuple{mem=f .mother, fam=£}, ‘w’)) --BIl2
13 )}
14
15 rule Father2Man { —-—- R2
16 from
17 mem : Families!Member, fam : Families!Family
18 (fam.father=mem)
19 to
20 m : Persons!Man (
21 fullName <- mem.firstName + fam.lastName --BZ2
22 )}

m Implicit resolution mechanism of ATL
m Through collect operation
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DSLTrans Transformation

= Visual language for model transformations
m Graph-based, contains rules arranged in layers
m Out-place so no rewriting performed, only production
m Suited for ‘translation’ transformations
m All DSLTrans computations are terminating and confluent

» Unbounded loops during execution are not allowed
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DSLTrans

Father2Man
father
w Mermnber w Family
‘ firsthlame | = ‘ JastMame
Households2Community — UnionFather
have
w Households — 4 W HDU;E"‘OM; ] Farnllyfathe"  Member ‘
1 Man
> = : : :
— fullName = =
‘r?’;‘) Cﬂ""""“"ity‘ s ‘ffi Community 7 Man
| ‘ has
L

m Rules arranged in layers
= Match graph on top of rules
= Apply graph on bottom
m Produced when match graph is found
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Mapping - Part One

m Higher-order transformation written in ATL
m Creates a DSLTrans transformation from declarative ATL
m Informal testing: less than 20 seconds

= Available on our website: http:
//msdl.cs.mcgill.ca/people/levi/files/MODELS2015
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Mapping - Part Two

TABLE 1
FEATURES OF DECLARATIVE ATL CONSIDERED

Matched Rules v Filters v

Lazy Rules v" | OCL Expressions v

Several Bindings v Helpers X
Several InPatternElements v Conditions X
Several OutPatternElements v Using Block X

m Covers declarative ATL

m Transformation can be rewritten to avoid missing features
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Mapping - Part Three

m Two steps for higher-order transformation

m First, each from/to part of an ATL rule is transformed into
match/apply graphs in DSLTrans

m Attributes will also be set in these rules

m Second, DSLTrans rules are produced for any bindings in the
ATL rule
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Mapping - Part Four

rule Households2Community { —-- RI
from

hh: Families!Households
to

c : Persons!Community (

has <- hh.have->collect (f | thisModule.
resolveTemp (Tuple{mem=f.father, fam=£f}, ‘m’)),
has <- hh.have->collect (f | thisModule.

—-—BI11

resolveTemp (Tuple{mem=f .mother, fam=£f}, ‘w’)) —-BI1Z2

)}

FatherZMan

father

w Member  Family
‘ firsthame | = ‘ JastName
Heusehelds2Cornmunity —_— UnionFather
have father
+ Househalds + Households w Family w Member

1 Man . . .
> > : . -

) Community ) Man

has

e — fullName
".%J(Iommunity‘ — II

Oakes, Troya, Lucio, Wimmer Verifying ATL




@ fourMembers

[Z Community ;
[Z Woman

m If blue graph is in input model, then red graph is in output model

m Objective: Prove for all input models/transformation executions

m A family with a father, mother, son, daughter should always
produce two males and two females in the target community
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[2] motherrather

m Reasoning about attributes of elements
m /s the full name of the produced Person correctly created from
the last name of the Family and the first name of the Member?
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@ daughterMother

‘

m A contract that will not hold

m A family with a mother and a daughter will always produce a
community with a man
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Contract Proving - Part One

m SyVOLT contract proving tool
m All possible executions of the transformation are symbolically
constructed
m Built as sets of rules called path conditions

m No rules execute, only rule 1 executes, rule 1 and rule 2 both
execute
m Rule dependencies/combinations resolved

m Final set of path conditions represents all possible
transformation executions
= A contract holds for a transformation if it holds for all generated
path conditions

L. Lacio, B. Oakes, and H. Vangheluwe. A technique for symbolically
verifying properties of graph-based model transformations. Tech. Report
SOCS-TR-2014.1, McGill U, 2014.

Levi Lucio et al. SyVOLT: Full Model Transformation Verification Using
Contracts
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Contract Proving - Part Two

@ daughterMother

ED- Member

m A family with a mother and a daughter will always produce a
community with a man

m Fails on path condition:
'HEmpty HRoot HMotherRule HDaughterRule’
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Experiments Conducted

m Applicability of the Technique
m Time and Memory Characteristics
® Reducing Contract Proving Time

m Higher-Order Transformation
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Applicability of the Technique - Part One

= Applied to multiple transformations from ATL zoo
m Ranging in size from 5-15 ATL rules
m Example below:
m Ecore Copier transformation - 11 ATL rules, 24 DSLTrans rules
m Copies Ecore elements in input model to output model

[2] bi-directionalEClassReference

[ EReference
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Applicability of the Technique - Part Two

m Technique works with attributes on elements
= Proving names of people correctly created

[E) motherFather
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Applicability of the Technique - Part Three

@ CommunityPersonl @ CommunityPerson2

Ei"s Person equal Ei"ﬂ Person

)
E:‘HB . ‘
equal QS Person

j CommunityPersonl implies not (CommunityPerson2)
m ‘If a Community is connected to a Person element, that Community is
connected to one and only one Person element’

m Selim, Gehan. Formal Verification of Graph-Based Model
Transformations. PhD Diss. Queen’s University, 2015.
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Time and Memory Characteristics

ATL/ DSLTrans Rules Path Conds. Gen. | Time (s) Contracts Proved | Time (s) Memory (MB)

Families-to-Person 5/9 52 1.54 4 31.45 45

ER-Copier 5/9 70 048 1 1.70 43

Ecore-Copier 11724 57890 | 2894.44 1 1401.45 7800
m Feasible

m Time - Ranging from 0.5 seconds to 48 minutes (on laptop)
= Memory - 43 to 7800 MB RAM/disk usage
m (Both measures have been improved in newer tool versions)
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Reducing Contract Proving Time

| ATL/ DSLTrans Rules || Path Conds. Gen. | Time (s) || Contracts Proved | Time (s) || Memory (MB)
Sliced Transformation (Contract 1) 15/13 73 3.50 9.11
" Sliced Transformation (Contract 2) 15/17 28 0.95 1 0.46

71

m Examined ATL transformation which is transformed into 63
DSLTrans rules

m To make feasible, need to slice transformation based on contract

m Procedure:

m Find rules that create contract elements
m Recursively create rule dependency tree

m Manually performed - slicing has since been automated
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Higher-Order Transformation

m Question: Is a transformation produced by a HOT equivalent to
a hand-built one?

ATL/ DSLTrans Rules Path Conds. Gen.

Time (s) Contracts Proved | Time (s)
Industrial (from [18])

Memory (MB)
~ 57117 3 0.07 9 0.16 43
Industrial (from HOT) 5/9 3 0.17 9 0.26 48

m Note that number of rules/transformation shape not optimized
= But HOT produces roughly equivalent result

G. M. Selim, L. Lacio, J. R. Cordy, J. Dingel, and B. J. Oakes. Specification
and verification of graph-based model transformation properties. In Graph
Transformation, pages 113-129. Springer, 2014.
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m Developed higher-order transformation to transform ATL into
DSLTrans
m Can verify visual contracts on DSLTrans transformations in
feasible time
= Contracts verified on all transformation executions
m Future work
m Integrate HOT into SyVOLT tool
m Investigate contract-based transformation development

= Thank you for your time!

Fully Verifying Transformation Contracts for Declarative
ATL
Bentley James Oakes, Javier Troya, Levi Licio, and Manuel
Wimmer
McGill University, Canada
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Multiplicity Contract

4 ACL 4 Ac2 & AC3
[ Precondition I [ Precondition J [ Precondition ]
| Postondition
4 Proc
4 New & New o 4 Proc 4 New ] P|
freevar = NEW freevar = NEW freeVar = NEW & proc
P
J

i

Figure C.1: AtomicContracts AC1, ACZ, and ACS that are used to express MM1
(Table 6.4) as AC1 ==, (AC2 Ay . AC3).

“Multiplicity Invariants ensure that the transformation does not
produce an output that violates the multiplicities in the Kiltera

metamodel”

Oakes, Troya, Lucio, Wimmer

Verifying ATL

26 /28



Syntactic Invariant

$ Acs 4+ ACS

[ Precondition [ Precondition J

[ Postoondition Posteondition
4 Listen 4 Listen branches | 4 ListenBranch
freeVar = LISTEN freeVar = LISTEN

Figure C.5: AtomicContracts AC4 and ACS5 that are used to express MM5 (Ta-
ble 6.4) as AC4 =, AC5.

“Syntactic Invariants ensure that the generated Kiltera output model
is well-formed with respect to Kiltera's syntax.”
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Pattern Contracts
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Figure C.16: AtomnicContract AC4I that is used to express PP2 (Table 6.4).

“Pattern contracts require that if a certain pattern of elements exists
in the input model, then a corresponding pattern of elements exists in
the output model”
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