Fully Veritying Transformation Contracts for
Declarative ATL

Bentley James Oakes, Javier Troya, Levi Lacio, Manuel
Wimmer

McGill University, Canada
Vienna University of Technology, Austria

BIG||T
AL

Business Informatics Group

McGill

Oakes, Troya, Lucio, Wimmer Verifying ATL

= Model transformations are at the heart of model-based
engineering
m Atlas Transformation Language (ATL) is increasingly used in

industry
m Example: Generating code to/from models

= Want to verify correctness for ATL transformation specifications

m Verify visual contracts
m Input independence - verification for all input models
m Examine combinations of transformation rules

Oakes, Troya, Lucio, Wimmer Verifying ATL 2/28

Overview

= Translating ATL transformation into DSLTrans language

m Verify visual contracts on DSLTrans

ATLC DSLTrans

[_Translation (ATL HOT) > =7 (I= =

m Performed through a higher-order transformation
m Specified in ATL

Oakes, Troya, Lucio, Wimmer Verifying ATL 3/28

Transformation Metamodels

Haisaholds | Gounly |

have To..* has To..*

Family | Person

father mother daughter son
0..2 0..2 * *

Member | Man | Woman

m Transform Members to Men and Women

m NB: Metamodels are not representative of today's society!

Oakes, Troya, Lucio, Wimmer Verifying ATL

ATL Transformation

1 module Families2Persons;

2 create OUT : Persons from IN : Families;
3

4

5

6

7

8

9

10

11

12

13

14

15 rule Father2Man { —-- RZ

16 from

17 mem : Families!Member, fam : Families!Family
18 (fam.father=mem)

19 to

20 m : Persons!Man (

21 fullName <- mem.firstName + fam.lastName --B2
22)}

Oakes, Troya, Lucio, Wimmer Verifying ATL

ATL Transformation

module Families2Persons;
create OUT : Persons from IN : Families;

1

2

3

4 rule Households2Community { —— RI
5 from

6 hh: Families!Households

7
8

to
c : Persons!Community (

9 has <- hh.have->collect (f | thisModule.
10 resolveTemp (Tuple{mem=£f.father, fam=£f}, 'm")), —-BII
11 has <- hh.have->collect (f | thisModule.
12 resolveTemp (Tuple{mem=f .mother, fam=£}, ‘w’)) --BIl2
13)}
14
15 rule Father2Man { —-—- R2
16 from
17 mem : Families!Member, fam : Families!Family
18 (fam.father=mem)
19 to
20 m : Persons!Man (
21 fullName <- mem.firstName + fam.lastName --BZ2
22)}

m Implicit resolution mechanism of ATL
m Through collect operation

Oakes, Troya, Lucio, Wimmer Verifying ATL

DSLTrans Transformation

= Visual language for model transformations
m Graph-based, contains rules arranged in layers
m Out-place so no rewriting performed, only production
m Suited for ‘translation’ transformations
m All DSLTrans computations are terminating and confluent

» Unbounded loops during execution are not allowed

Oakes, Troya, Lucio, Wimmer Verifying ATL 7/28

DSLTrans

Father2Man
father
w Mermnber w Family
‘ firsthlame | = ‘ JastMame
Households2Community — UnionFather
have
w Households — 4 W HDU;E"‘OM;] Farnllyfathe" Member ‘
1 Man
> = : : :
— fullName = =
‘r?’;‘) Cﬂ""""“"ity‘ s ‘ffi Community 7 Man
| ‘ has
L

m Rules arranged in layers
= Match graph on top of rules
= Apply graph on bottom
m Produced when match graph is found

Oakes, Troya, Lucio, Wimmer Verifying ATL

Mapping - Part One

m Higher-order transformation written in ATL
m Creates a DSLTrans transformation from declarative ATL
m Informal testing: less than 20 seconds

= Available on our website: http:
//msdl.cs.mcgill.ca/people/levi/files/MODELS2015

Oakes, Troya, Lucio, Wimmer Verifying ATL

http://msdl.cs.mcgill.ca/people/levi/files/MODELS2015
http://msdl.cs.mcgill.ca/people/levi/files/MODELS2015

Mapping - Part Two

TABLE 1
FEATURES OF DECLARATIVE ATL CONSIDERED

Matched Rules v Filters v

Lazy Rules v" | OCL Expressions v

Several Bindings v Helpers X
Several InPatternElements v Conditions X
Several OutPatternElements v Using Block X

m Covers declarative ATL

m Transformation can be rewritten to avoid missing features

Oakes, Troya, Lucio, Wimmer

Mapping - Part Three

m Two steps for higher-order transformation

m First, each from/to part of an ATL rule is transformed into
match/apply graphs in DSLTrans

m Attributes will also be set in these rules

m Second, DSLTrans rules are produced for any bindings in the
ATL rule

Oakes, Troya, Lucio, Wimmer Verifying ATL 11/28

Mapping - Part Four

rule Households2Community { —-- RI
from

hh: Families!Households
to

c : Persons!Community (

has <- hh.have->collect (f | thisModule.
resolveTemp (Tuple{mem=f.father, fam=£f}, ‘m’)),
has <- hh.have->collect (f | thisModule.

—-—BI11

resolveTemp (Tuple{mem=f .mother, fam=£f}, ‘w’)) —-BI1Z2

)}

FatherZMan

father

w Member Family
‘ firsthame | = ‘ JastName
Heusehelds2Cornmunity —_— UnionFather
have father
+ Househalds + Households w Family w Member

1 Man . . .
> > : . -

) Community) Man

has

e — fullName
".%J(Iommunity‘ — II

Oakes, Troya, Lucio, Wimmer Verifying ATL

@ fourMembers

[Z Community ;
[Z Woman

m If blue graph is in input model, then red graph is in output model

m Objective: Prove for all input models/transformation executions

m A family with a father, mother, son, daughter should always
produce two males and two females in the target community

Oakes, Troya, Lucio, Wimmer Verifying ATL

[2] motherrather

m Reasoning about attributes of elements
m /s the full name of the produced Person correctly created from
the last name of the Family and the first name of the Member?

Oakes, Troya, Lucio, Wimmer Verifying ATL

@ daughterMother

‘

m A contract that will not hold

m A family with a mother and a daughter will always produce a
community with a man

Oakes, Troya, Lucio, Wimmer Verifying ATL

Contract Proving - Part One

m SyVOLT contract proving tool
m All possible executions of the transformation are symbolically
constructed
m Built as sets of rules called path conditions

m No rules execute, only rule 1 executes, rule 1 and rule 2 both
execute
m Rule dependencies/combinations resolved

m Final set of path conditions represents all possible
transformation executions
= A contract holds for a transformation if it holds for all generated
path conditions

L. Lacio, B. Oakes, and H. Vangheluwe. A technique for symbolically
verifying properties of graph-based model transformations. Tech. Report
SOCS-TR-2014.1, McGill U, 2014.

Levi Lucio et al. SyVOLT: Full Model Transformation Verification Using
Contracts

Oakes, Troya, Lucio, Wimmer Verifying ATL

Contract Proving - Part Two

@ daughterMother

ED- Member

m A family with a mother and a daughter will always produce a
community with a man

m Fails on path condition:
'HEmpty HRoot HMotherRule HDaughterRule’

Oakes, Troya, Lucio, Wimmer Verifying ATL

Experiments Conducted

m Applicability of the Technique
m Time and Memory Characteristics
® Reducing Contract Proving Time

m Higher-Order Transformation

Oakes, Troya, Lucio, Wimmer Verifying ATL

Applicability of the Technique - Part One

= Applied to multiple transformations from ATL zoo
m Ranging in size from 5-15 ATL rules
m Example below:
m Ecore Copier transformation - 11 ATL rules, 24 DSLTrans rules
m Copies Ecore elements in input model to output model

[2] bi-directionalEClassReference

[EReference

Oakes, Troya, Lucio, Wimmer Verifying ATL 19 /28

Applicability of the Technique - Part Two

m Technique works with attributes on elements
= Proving names of people correctly created

[E) motherFather

Oakes, Troya, Lucio, Wimmer Verifying ATL

Applicability of the Technique - Part Three

@ CommunityPersonl @ CommunityPerson2

Ei"s Person equal Ei"ﬂ Person

)
E:‘HB . ‘
equal QS Person

j CommunityPersonl implies not (CommunityPerson2)
m ‘If a Community is connected to a Person element, that Community is
connected to one and only one Person element’

m Selim, Gehan. Formal Verification of Graph-Based Model
Transformations. PhD Diss. Queen’s University, 2015.

Oakes, Troya, Lucio, Wimmer Verifying ATL

Time and Memory Characteristics

ATL/ DSLTrans Rules Path Conds. Gen. | Time (s) Contracts Proved | Time (s) Memory (MB)

Families-to-Person 5/9 52 1.54 4 31.45 45

ER-Copier 5/9 70 048 1 1.70 43

Ecore-Copier 11724 57890 | 2894.44 1 1401.45 7800
m Feasible

m Time - Ranging from 0.5 seconds to 48 minutes (on laptop)
= Memory - 43 to 7800 MB RAM/disk usage
m (Both measures have been improved in newer tool versions)

Oakes, Troya, Lucio, Wimmer Verifying ATL 22 /28

Reducing Contract Proving Time

| ATL/ DSLTrans Rules || Path Conds. Gen. | Time (s) || Contracts Proved | Time (s) || Memory (MB)
Sliced Transformation (Contract 1) 15/13 73 3.50 9.11
" Sliced Transformation (Contract 2) 15/17 28 0.95 1 0.46

71

m Examined ATL transformation which is transformed into 63
DSLTrans rules

m To make feasible, need to slice transformation based on contract

m Procedure:

m Find rules that create contract elements
m Recursively create rule dependency tree

m Manually performed - slicing has since been automated

Oakes, Troya, Lucio, Wimmer Verifying ATL 23 /28

Higher-Order Transformation

m Question: Is a transformation produced by a HOT equivalent to
a hand-built one?

ATL/ DSLTrans Rules Path Conds. Gen.

Time (s) Contracts Proved | Time (s)
Industrial (from [18])

Memory (MB)
~ 57117 3 0.07 9 0.16 43
Industrial (from HOT) 5/9 3 0.17 9 0.26 48

m Note that number of rules/transformation shape not optimized
= But HOT produces roughly equivalent result

G. M. Selim, L. Lacio, J. R. Cordy, J. Dingel, and B. J. Oakes. Specification
and verification of graph-based model transformation properties. In Graph
Transformation, pages 113-129. Springer, 2014.

Oakes, Troya, Lucio, Wimmer Verifying ATL 24 /28

m Developed higher-order transformation to transform ATL into
DSLTrans
m Can verify visual contracts on DSLTrans transformations in
feasible time
= Contracts verified on all transformation executions
m Future work
m Integrate HOT into SyVOLT tool
m Investigate contract-based transformation development

= Thank you for your time!

Fully Verifying Transformation Contracts for Declarative
ATL
Bentley James Oakes, Javier Troya, Levi Licio, and Manuel
Wimmer
McGill University, Canada
Vienna University of Technology, Austria
http://msdl.cs.mcgill.ca/people/levi/files/MODELS2015

Oakes, Troya, Lucio, Wimmer Verifying ATL

http://msdl.cs.mcgill.ca/people/levi/files/MODELS2015

Multiplicity Contract

4 ACL 4 Ac2 & AC3
[Precondition I [Precondition J [Precondition]
| Postondition
4 Proc
4 New & New o 4 Proc 4 New] P|
freevar = NEW freevar = NEW freeVar = NEW & proc
P
J

i

Figure C.1: AtomicContracts AC1, ACZ, and ACS that are used to express MM1
(Table 6.4) as AC1 ==, (AC2 Ay . AC3).

“Multiplicity Invariants ensure that the transformation does not
produce an output that violates the multiplicities in the Kiltera

metamodel”

Oakes, Troya, Lucio, Wimmer

Verifying ATL

26 /28

Syntactic Invariant

$ Acs 4+ ACS

[Precondition [Precondition J

[Postoondition Posteondition
4 Listen 4 Listen branches | 4 ListenBranch
freeVar = LISTEN freeVar = LISTEN

Figure C.5: AtomicContracts AC4 and ACS5 that are used to express MM5 (Ta-
ble 6.4) as AC4 =, AC5.

“Syntactic Invariants ensure that the generated Kiltera output model
is well-formed with respect to Kiltera's syntax.”

Oakes, Troya, Lucio, Wimmer Verifying ATL 27 /28

Pattern Contracts

-

-
& ACal1

s A
Precondition

+ outz] type +Transition1mggersr+ TNEEE‘W signal [4 Sgnal]
()1—(—»)

J

pe
Postondition

T
1)
‘.
T
A
- m —

. A
A s

Figure C.16: AtomnicContract AC4I that is used to express PP2 (Table 6.4).

“Pattern contracts require that if a certain pattern of elements exists
in the input model, then a corresponding pattern of elements exists in
the output model”

Oakes, Troya, Lucio, Wimmer Verifying ATL 28 /28

